

Defining suitable parameters for safe and effective deployment of a motorcycle Pre-Crash Braking system: findings from field testing and crash simulations

Presenter: Cosimo Lucci

Co-authors:

Niccolò Baldanzini, Pedro Huertas Leyva, Simone Piantini, and Giovanni Savino

Thomas Lich and Jan Schumacher

Claire Naude, Adrien Canu, Christophe Perrin and Thierry Serre

Université Gustave Eiffe

Pioneers project

Objectives:

- 1. To achieve a deep understanding of the injuries sustained by the riders
- 2. To increase the performance of safety systems
- 3. To develop better test and assessment methods
- 4. To increase the awareness and the usage rate of personal protective equipment

Cosimo Lucci – Defining suitable parameters for safe and effective deployment of a motorcycle Pre-Crash Braking system

Horizon 2020 European Union Funding for Research & Innovation

Introduction

Pre-Crash Braking (PCB) Motorcycle Autonomous Emergency Braking (MAEB)

- Odds of intervention could be
 23-50% of motorcycle
 crashes
- Main issues related to the stability of the vehicle, controllability and acceptability among endusers

Terranova, P., Dean, M.E., Lucci, C., Piantini, S., Allen, T.J., Savino, G., Gabler, H.C., Applicability Assessment of Active Safety Systems for Motorcycles Using Population-Based Crash Data : Cross-Country Comparison among Australia , Italy , and USA. Sustainability, 2022.

Identify **suitable parameters** of intervention and technical requirements for **safe and effective application of PCB**

Identify **suitable parameters** of intervention and technical requirements for **safe and effective application of PCB**

Identify **suitable parameters** of intervention and technical requirements for **safe and effective application of PCB**

Crash data

Crash reconstruction

Trajectories of vehicles prior to the crash reconstructed via numerical 2D simulations

Methods

Parameter	Range	Incremental step				
Triagoring stratogy	[conservative, standard,					
inggening strategy	progressive]	-				
Deceleration	[3 m/s² -7 m/s²]	2 m/s ²				
Fade-in Jerk	[15 m/s ³ -25 m/s ³]	-				
Field of View	+/- [10 $^{\circ}$ - 70 $^{\circ}$]	15 [°]				
Range	[30 m - 90 m]	15 M				

Crash simulations

- Triggering of MAEB at inevitable collision state
- Employing different PCB working parameters

PCB Benefits Estimation

Cosimo Lucci – Defining suitable parameters for safe and effective deployment of a motorcycle Pre-Crash Braking system

Results – PCB Impact Speed Reduction

- ➢ 45/60 cases with active PCB
- 3 realistic configuration tested:
 - **Pessimistic**: mean impact speed reduction of **2.8** km/h
 - Average: mean impact speed reduction of 10.7 km/h
 - **Optimistic**: mean impact speed reduction of **15.1** km/h

Goal

Identify **suitable parameters** of intervention and technical requirements for **safe and effective application of PCB**

Stratified sampling: 51 participants, common riders

Ducati Multistrada 1260s

- 14 days of test 31 participants
- Four maneuvers
- PCB nominal **deceleration**: 0.3 & 0.5 g
- PCB nominal **fade-in jerk**: 1.5 g/s
- → Approx 600 AB interventions

Field Tests

CURVE

STRAIGHT

Piaggio MP3

- 10 days of test 20 participants
- Two maneuvers
- PCB nominal deceleration: 0.3 & 0.5 g
- PCB nominal fade-in jerk: 1.5 g/s & 0.5 g/5
- → Approx 400 AB interventions

Ethical approval by the Ethics Committee of the University of Florence - (Written opinion N. 46, 20/03/2019)

Cosimo Lucci – Defining suitable parameters for safe and effective deployment of a motorcycle Pre-Crash Braking system

SLALOM

LANE-CHANGE

Tests Protocol

Lucci C, Marra M, Huertas-Leyva P, Baldanzini N, Savino G. Investigating the feasibility of Motorcycle Autonomous Emergency Braking (MAEB): design criteria for new experiments to field test automatic braking. MethodsX,2021.

Straight lane

Avoidance manoeuvre

Test results – Avoidance manoeuvre

Lucci C, Baldanzini N, Savino G. Field testing the applicability of motorcycle autonomous emergency braking (MAEB) during pre-crash avoidance manoeuvre. Traffic Injury Prevention, 2021.

Test results – PCB deceleration

Motorcycle - Perception of AB Deceleration 80 70 60 50 50 40 20 10 0 Much too Too low A bit low Just right A bit high Too high Much too low high

Straight (0.3g)
Lane Change (0.3g)
Straight (0.5g)
Lane Change (0.5g)

Two-Front-Wheels Scooter Perception of AB Deceleration

Test results – PCB acceptability

Participants' opinion on PCB

Lucci C, Baldanzini N, Savino G. Does Motorcycle Autonomous Emergency Braking (MAEB) mitigate rider injuries and fatalities? Design of effective working parameters and field test validation of their acceptability. Transportation Research part C: Emerging Technologies, 2022

Conclusions – Importance of PCB parameters

Defining suitable parameters for safe and effective deployment of a motorcycle Pre-Crash Braking system: findings from field testing and crash simulations

Presenter: Cosimo Lucci

Thank you for your attention !

Co-authors:

Niccolò Baldanzini, Pedro Huertas Leyva, Simone Piantini, and Giovanni Savino

Thomas Lich and Jan Schumacher

Claire Naude, Adrien Canu, Christophe Perrin, and Thierry Serre

Université Gustave Eiffel

Literature review

Analysis of the stability of PTW riders in autonomous braking scenarios I. Symeonidis et al. – 2012

PISa Project (Powered-two-wheelers Integrated Safety)

G. Savino et al. – 2012

ABRAM Project (Autonomous BRAking for Motorcycles)

G. Savino et al. – 2016

Limits of Autonomous Emergency Brake Systems for Powered Two-Wheelers – an Expert Study

N. Merkel et al. – 2018

Literature review

Safety Sistem	Category 1 (not relevant)			Category 2 (possible)			C (1	ategory probably	3)	Category 4 (definitely)			
	Prato	USA	Victoria	Prato	USA	Victoria	Prato	USA	Victoria	Prato	USA	Victoria	
ABS	8,8%	15,4%	7,1%	13,0%	54,3%	49,3%	3,5%	3,1%	2,3%	74,7%	27,2%	40,6%	
MAEB	21,4%	32,8%	52,1%	27,0%	47,5%	24,3%	41,1%	8,1%	17,3%	10,5%	11,6%	5,7%	
Collision warning	19,6%	32,7%	41,6%	3,9%	37,4%	14,1%	36,5%	8,7%	20,5%	40,0%	21,2%	23,1%	
Curve warning	90,9%	58,2%	79,1%	4,6%	32,2%	4,4%	0%	0%	0%	4,6%	9,6%	15,8%	
Curve assist	70,2%	72,0%	43,5%	22,8%	14,7%	36,6%	2,5%	3,4%	3,2%	4,6%	9,9%	16,1%	

P. Terranova, M. Dean, H. C. Gabler, S. Piantini, and G. Savino, "Active safety systems for motorcycles where are we A novel transnational comparison of applicability in the Australian, American and Italian fleets" in AAAM Student Symposium, 2020, pp. 2018–2020

Results – PCB Triggering & Field of view

Results – PCB Deceleration & Fade-in jerk

Equipment and instrumentation

Test protocol

Field tests results

Test Vehicle	Participa nts	Manoeuvre	Nominal deceleratio n [m/s²]	N° of PCB activations	Initial Speed [km/h]		Event duration [s]		Deceleration [m/s²]		Fade-in jerk [m/s³]	
					Mean	SD	Mean	SD	Mean	SD	Mean	SD
Ducati Multistrada	31	Straight-line	3	63	47.6	4.7	1.07	0.03	2.9	0.3	15.0	4.0
		Lane change		65	41.7	6.0	1.05	0.11	3.0	0.4	12.6	4.1
		Straight-line	5	63	49.1	4.7	1.14	0.03	4.7	0.4	20.2	3.9
		Lane change		65	41.5	5.4	1.05	0.20	4.8	0.4	19.6	7.3
Piaggio MP3	20	Straight-line	3	42	40.7	3.8	0.97	0.12	3.1	0.3	15.3	3.4
		Lane change		34	38.8	3.2	0.96	0.13	3.6	0.3	17.2	3.9
		Straight-line	5	40	41.1	4.7	1.00	0.00	4.7	0.4	18.9	3.2
		Lane change		33	39.4	3.3	0.93	0.19	5.2	0.5	20.5	4.4

Slalom

Curve

Curve

Test results – PCB Fade-in jerk

Motorcycle - Perception of AB Jerk

Test Results

a) Volunteers' opinion on PTW assistance systems

■ Very useful ■ Useful ■ Useless ■ Damaging ■ I don't know

Cosimo Lucci – Defining suitable parameters for safe and effective deployment of a motorcycle Pre-Crash Braking system

Test Results

Test Results

